Deakin University
Browse

File(s) under permanent embargo

A genetic algorithm–based nonlinear scaling method for optimal motion cueing algorithm in driving simulator

journal contribution
posted on 2018-08-01, 00:00 authored by Houshyar AsadiHoushyar Asadi, Chee Peng LimChee Peng Lim, Arash Mohammadi, Shady MohamedShady Mohamed, Saeid Nahavandi, Lakshmanan Shanmugam
A motion cueing algorithm plays an important role in generating motion cues in driving simulators. The motion cueing algorithm is used to transform the linear acceleration and angular velocity of a vehicle into the translational and rotational motions of a simulator within its physical limitation through washout filters. Indeed, scaling and limiting should be used along within the washout filter to decrease the amplitude of the translational and rotational motion signals uniformly across all frequencies through the motion cueing algorithm. This is to decrease the effects of the workspace limitations in the simulator motion reproduction and improve the realism of movement sensation. A nonlinear scaling method based on the genetic algorithm for the motion cueing algorithm is developed in this study. The aim is to accurately produce motions with a high degree of fidelity and use the platform more efficiently without violating its physical limitations. To successfully achieve this aim, a third-order polynomial scaling method based on the genetic algorithm is formulated, tuned, and implemented for the linear quadratic regulator–based optimal motion cueing algorithm. A number of factors, which include the sensation error between the real and simulator drivers, the simulator’s physical limitations, and the sensation signal shape-following criteria, are considered in optimizing the proposed nonlinear scaling method. The results show that the proposed method not only is able to overcome problems pertaining to selecting nonlinear scaling parameters based on trial-and-error and inefficient usage of the platform workspace, but also to reduce the sensation error between the simulator and real drivers, while satisfying the constraints imposed by the platform boundaries.

History

Journal

Proceedings of the Institution of Mechanical Engineers. Part I: journal of systems and control engineering

Volume

232

Issue

8

Pagination

1025 - 1038

Publisher

SAGE Publications

Location

London, Eng.

ISSN

0959-6518

eISSN

2041-3041

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2018, IMechE

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC