Deakin University
Browse

File(s) under permanent embargo

A glycosyl hydrolase family 16 gene is responsible for the endogenous production of β-1,3-glucanases within decapod crustaceans

journal contribution
posted on 2015-09-01, 00:00 authored by Stuart Linton, Melissa Cameron, Michael Gray, John DonaldJohn Donald, R Saborowski, M von Bergen, J M Tomm, Ben AllardyceBen Allardyce
To identify the gene responsible for the production of a β-1,3-glucanase (laminarinase) within crustacea, a glycosyl hydrolase family 16 (GHF16) gene was sequenced from the midgut glands of the gecarcinid land crab, Gecarcoidea natalis and the freshwater crayfish, Cherax destructor. An open reading frame of 1098bp for G. natalis and 1095bp for C. destructor was sequenced from cDNA. For G. natalis and C. destructor respectively, this encoded putative proteins of 365 and 364 amino acids with molecular masses of 41.4 and 41.5kDa. mRNA for an identical GHF16 protein was also expressed in the haemolymph of C. destructor. These putative proteins contained binding and catalytic domains that are characteristic of a β-1,3-glucanase from glycosyl hydrolase family 16. The amino acid sequences of two short 8-9 amino acid residue peptides from a previously purified β-1,3-glucanase from G. natalis matched exactly that of the putative protein sequence. This plus the molecular masses of the putative proteins matching that of the purified proteins strongly suggests that the sequences obtained encode for a catalytically active β-1,3-glucanase. A glycosyl hydrolase family 16 cDNA was also partially sequenced from the midgut glands of other amphibious (Mictyrisplatycheles and Paragrapsus laevis) and terrestrial decapod species (Coenobita rugosus, Coenobita perlatus, Coenobita brevimanus and Birgus latro) to confirm that the gene is widely expressed within this group. There are three possible hypothesised functions and thus evolutionary routes for the β-1,3-glucanase: 1) a digestive enzyme which hydrolyses β-1,3-glucans, 2) an enzyme which cleaves β-1,3-glycosidic bonds within cell walls to release cell contents or 3) an immune protein which can hydrolyse the cell walls of potentially pathogenic micro-organisms.

History

Journal

Gene

Volume

569

Issue

2

Pagination

203 - 217

Publisher

Elsevier

Location

Amsterdam, The Netherlands

eISSN

1879-0038

Language

eng

Publication classification

C1 Refereed article in a scholarly journal; C Journal article

Copyright notice

2015, Elsevier