Deakin University
Browse

File(s) not publicly available

A nonlinear double-integral sliding mode controller design for hybrid energy storage systems and solar photovoltaic units to enhance the power management in DC microgrids

journal contribution
posted on 2022-09-29, 02:14 authored by S K Ghosh, T K Roy, M A H Pramanik, Apel MahmudApel Mahmud
In this paper, a nonlinear decentralized double-integral sliding mode controller (DI-SMC) is designed along with an energy management system (EMS) for the DC microgrid (DCMG). This DCMG includes having a hybrid energy storage system (HESS) that incorporates a battery energy storage system (BESS) and supercapacitor energy storage system (SCESS) while the load demand is met through the power generated from solar photovoltaic (SPV) units. First, dynamical models of each subsystem of DCMGs such as the SPV system, BESS, and SCESS are developed to capture highly nonlinear behaviors of DCMGs under various operating conditions. The proposed nonlinear DI-SMC is then designed for each power unit in DCMGs to ensure the desired voltage level at the common DC-bus and appropriate power dispatch of different components to fulfill the load requirement of the DCMG. On the other hand, an energy management system (EMS) is designed to determine the set point for the controller with an aim of ensuring the power balance within DCMGs under various operating conditions where the overall stability is assessed using the Lyapunov theory. Simulation studies along with the processor-in-loop validation, including a comparative study with a proportional-integral (PI) controller, verify the applicability and effectiveness of the EMS-based DI-SMC under different operating conditions of the DCMG.

History

Journal

IET Generation, Transmission and Distribution

Volume

16

Issue

11

Pagination

2228 - 2241

ISSN

1751-8687

eISSN

1751-8695

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC