Deakin University
Browse

File(s) under permanent embargo

Capsular polypyrrole hollow nanofibers: an efficient recyclable adsorbent for hexavalent chromium removal

journal contribution
posted on 2015-08-07, 00:00 authored by J Zhao, Zhenyu Li, Jinfeng Wang, Sulley LiSulley Li, Xungai Wang
Capsular polypyrrole hollow nanofibers (PPy-HNFs) were fabricated via in situ polymerization of pyrrole on an organic-inorganic template, followed by acid etching. Their application in removing hexavalent chromium (Cr(vi)) from aqueous solution was then investigated. The morphologies of the capsular PPy-HNFs were studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which showed that the PPy-HNFs had a capsular structure in the walls of hollow nanofibers. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) data confirmed the adsorption of Cr on capsular PPy-HNFs. The adsorption capacity increased with reduced pH of the initial solution and the adsorption process can be described using the pseudo-second-order model. These capsular PPy-HNFs showed a high Cr(vi) adsorption capacity up to 839.3 mg g-1. This adsorption capacity was largely retained even after five adsorption/desorption cycles. Electrostatic attraction between Cr and PPy-HNFs was studied using a proposed adsorption mechanism. The capsular PPy-HNFs formed a flexible membrane, which allowed easy handling during application. This study has demonstrated the possibilities of using this capsular PPy-HNF membrane for heavy metal removal from aqueous solution.

History

Journal

Journal of materials chemistry A

Volume

3

Issue

29

Pagination

15124 - 15132

Publisher

Royal Society of Chemistry

Location

Londo, Eng.

ISSN

2050-7488

eISSN

2050-7496

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2015, RSC