Deakin University
Browse

File(s) under permanent embargo

Linear precoder design for base station energy cooperation in DC microgrids

journal contribution
posted on 2019-05-20, 00:00 authored by Shama IslamShama Islam, Apel MahmudApel Mahmud, Sajeeb Saha, Enamul HaqueEnamul Haque
In this study, the energy data transfer problem in a DC microgrid with multiple renewable powered base stations (BSs) is considered. These BSs can share the renewable generation among each other. The energy cooperation is optimised by the control unit. For effective energy cooperation, energy data needs to be transferred from BSs to the control unit with low latency and high reliability. For cellular enabled microgrid communication, the energy data exchange and cellular communication both use the same communication resources. Thus, there will be interference at the control unit and cellular user (CU), which degrades the reliability of energy data transfer. To solve this problem, a linear precoding technique is designed to minimise the mean square error of the desired messages at the control unit, BSs, and CU while the interferences are kept at a predefined level. For the designed precoders, the expressions of signal-to-interference-plus-noise ratio are formulated and the error performance is analysed. Numerical simulation has been performed to compare the considered precoding technique with other precoding techniques. The simulation results demonstrate that optimum precoding can improve the error performance at the control unit, BSs, and CU by 1, 5, and 3 dB, respectively.

History

Journal

IET renewable power generation

Volume

13

Issue

7

Pagination

1076 - 1086

Publisher

Institution of Engineering and Technology

Location

Stevenage, Eng.

ISSN

1752-1416

eISSN

1752-1424

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2019, The Institution of Engineering and Technology