Deakin University
Browse

File(s) under permanent embargo

Polyacrylonitrile/liquid crystalline graphene oxide composite fibers – Towards high performance carbon fiber precursors

journal contribution
posted on 2019-09-29, 00:00 authored by Nisa Salim, Xing Jin, Joselito RazalJoselito Razal
© 2019 Elsevier Ltd We have prepared high performance, continuous carbon fiber precursors mimicking the industrial processing by wet spinning technology using polyacrylonitrile (PAN)/liquid crystalline graphene oxide (LCGO) for the first time. This work highlights the unexplored production of novel PAN composite fibers with addition of very low percentage of LCGO without using any surface modifications or coating. Following the coagulation process, as spun PAN/LCGO fibers were passed through a series of wash baths operated at various temperatures and multiple hot stretching baths prior to drying, and taken-up using a traversing winder. Current study also investigates the chemical and microstructural changes of PAN due to the addition of very low amounts of GO without the use of binders or surface treatments. The tensile strength and tensile modulus of the fibers were significantly improved with low filler content up to 1 wt% of LCGO into PAN dope that is, a 115% improvement of tensile strength and 152% increase of tensile modulus were achieved at a filler loading of 0.5 wt% whereas 138% improvement in tensile strength at 1 wt% of LCGO. This study revealed that it is possible to produce high strength precursor fibers by wet spinning with the addition of low filler content by make use of LCGO in PAN solution; this can further provide pathways for making high performance carbon fibers.

History

Journal

Composites Science and Technology

Volume

182

Article number

107781

Pagination

1 - 9

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0266-3538

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC