Deakin University
Browse

File(s) under permanent embargo

Prediction of superhard B2N3 with two-dimensional metallicity

journal contribution
posted on 2019-01-01, 00:00 authored by S Lin, M Xu, J Hao, X Wang, M Wu, J Shi, W Cui, Dan LiuDan Liu, Weiwei LeiWeiwei Lei, Y Li
© 2019 The Royal Society of Chemistry. Materials possessing both superhard and metallic properties are beneficial for the creation of multifunctional devices under extreme conditions. Here, we report the formation of a new metallic superhard boron nitride at high pressure with stoichiometry B2N3 through first-principles calculations and structure searching. At ambient pressure, B2N3 has layered structures (h-B2N3) consisting of hexagonal B4N4 layers intercalated by triply bonded N2 molecules. With the pressure increasing to ∼10 GPa, h-B2N3 transforms to a three-dimensional tetragonal structure (t-B2N3) with the formation of single N-N bonds. Calculations reveal that t-B2N3 can be recovered under ambient conditions in view of the dynamical, thermal and mechanical stability. Interestingly, t-B2N3 is proposed to be a superhard material with an estimated Vicker's hardness of ∼52 GPa by performing stress-strain calculations. More importantly, electronic calculations show unique two-dimensional metallicity in t-B2N3, which originates from the π orbitals of N-N bonds spreading in the ab plane. In addition, the energy density of ∼2.95 kJ g-1 makes t-B2N3 a potential high-energy density material.

History

Journal

Journal of materials chemistry c

Volume

7

Issue

15

Pagination

4527 - 4532

Publisher

Royal Society of Chemistry

Location

Cambridge, Eng.

eISSN

2050-7534

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2019, The Royal Society of Chemistry

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC