Deakin University
Browse

File(s) under permanent embargo

Source of Bet v 1 loaded inhalable particles from birch revealed

journal contribution
posted on 1997-12-01, 00:00 authored by G Schappi, Philip Taylor, I Staff, Cenk SuphiogluCenk Suphioglu, R Knox
Allergenic proteins present in pollen grains, when inhaled, interact with the airways to cause an attack of asthma in susceptible humans. In one system, grass pollen grains rupture osmotically in rainfall, releasing allergen-containing inhalable particles into the atmosphere. In contrast, birch tree pollen grains do not rupture under these conditions, yet the major allergen, Bet v 1, has been detected in the atmosphere in inhalable particles of unknown origin. It is possible that Bet v 1 may diffuse from intact settled pollen grains and the allergenic material may again become airborne, interacting with settled fine particles from other sources prior to resuspension. This study investigates the mechanism for the release of birch pollen allergen-containing inhalable particles from pollen grains. We propose the hypothesis that (1) airborne birch pollen grains settle on nearby leaf surfaces; (2) then, following light rainfall, the grains germinate and, (3) later, pollen tubes burst, releasing inhalable particles carrying Bet v 1 into the atmospheric aerosol.   We used microscopic analyses of pollen behaviour following anther opening, a Burkard volumetric trap for pollen counts and a high volume air sampler with a two-stage cascade impactor for quantitative immunochemical analyses of Bet v 1. On dry days of high birch pollen count (48 grains/m3, 1.5 ng/m3 of Bet v 1), we found that the surfaces of birch leaves became coated with pollen. This ”pollen rain” is a source of secondary emission of allergens into the atmosphere. We observed that following light rainfall (<1 mm per day), about 80% of the birch pollen grains germinated, producing pollen tubes, especially in the sticky surface secretions of leaf glands. These pollen tubes may grow up to 300 μm in length prior to rupturing, each releasing about 400 starch granules coated with allergen molecules that may, after drying, be dispersed into the aerosol. On these days following light rainfall, the highest atmospheric levels of Bet v 1 (1.18 ng/m3) are associated with inhalable particles. Following heavy rainfall, both pollen and inhalable particles are washed from the atmosphere. Immunoprinting studies show that Bet v 1 is associated with starch granules rather than the smaller orbicules. Bet v 1 is present in the atmosphere in large particles, i.e. in particular pollen grains and in inhalable particles, i.e. in particular starch granules.

History

Journal

Sexual plant reproduction

Volume

10

Issue

6

Pagination

315 - 323

Publisher

Springer

Location

Heidelberg, Germany

ISSN

0934-0882

eISSN

1432-2145

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC