Deakin University
Browse

File(s) under permanent embargo

Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries

journal contribution
posted on 2020-01-10, 00:00 authored by V Ghanooni Ahmadabadi, K Shirvanimoghaddam, Robert KerrRobert Kerr, N Showkath, Minoo NaebeMinoo Naebe
© 2019 Elsevier Ltd A flexible silicon-carbon nanofibre composite is reported as an anode material for lithium-ion batteries. Self-standing, binder-free and flexible anodes composed of Si nanoparticles embedded inside carbon nanofibers of different fibre diameter are fabricated via electrospinning. The silicon nanoparticles are effectively protected from direct exposure to the electrolyte by the carbon fibre encapsulation, leading to vastly improved capacity retention during galvanostatic half-cell cycling. Cycling results also showed that an electrode with 230 nm fibre diameter has enhanced cyclability and rate capability when compared to one with 620 nm diameter. SEM (scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) post-cycling investigations of the electrodes reveals an appropriate structural stability and lower impedance during cycling for the electrode with thinner carbon fibres. This behaviour is associated with the low linear density of the Si nanoparticles along the thin carbon nanofibers, which prevents the fracture of the carbon fibres at the sites of Si clusters.

History

Journal

Electrochimica Acta

Volume

330

Article number

135232

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0013-4686

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC