Deakin University
Browse

File(s) under permanent embargo

Synthesis of a porous sheet-like V₂O₅-CNT nanocomposite using an ice-templating 'bricks-and-mortar' assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries

journal contribution
posted on 2016-01-01, 00:00 authored by J Cheng, G Gu, Q Guan, Joselito RazalJoselito Razal, Zhiyu Wang, X Li, Bo Wang
Tailoring the nanostructures of electrode materials is an effective way to enhance their electrochemical performance for energy storage. Herein, an ice-templating "bricks-and-mortar" assembly approach is reported to make ribbon-like V2O5 nanoparticles and CNTs integrated into a two-dimensional (2D) porous sheet-like V2O5-CNT nanocomposite. The obtained sheet-like V2O5-CNT nanocomposite possesses unique structural characteristics, including a hierarchical porous structure, 2D morphology, large specific surface area and internal conducting networks, which lead to superior electrochemical performances in terms of long-term cyclability and significantly enhanced rate capability when used as a cathode material for LIBs. The sheet-like V2O5-CNT nanocomposite can charge/discharge at high rates of 5C, 10C and 20C, with discharge capacities of approximately 240 mA h g-1, 180 mA h g-1, and 160 mA h g-1, respectively. It also retains 71% of the initial discharge capacity after 300 cycles at a high rate of 5C, with only 0.097% capacity loss per cycle. The rate capability and cycling performance of the sheet-like V2O5-CNT nanocomposite are significantly better than those of commercial V2O5 and most of the reported V2O5 nanocomposite.

History

Journal

Journal of materials chemistry A

Volume

4

Issue

7

Pagination

2729 - 2737

Publisher

Royal Society of Chemistry

Location

Cambridge, Eng.

ISSN

2050-7488

eISSN

2050-7496

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2016, Royal Society of Chemistry